‹Programming› 2023
Mon 13 - Fri 17 March 2023 Tokyo, Japan

Compiler optimization decisions are often based on hand-crafted heuristics centered around a few established benchmark suites. Alternatively, they can be learned from feature and performance data produced during compilation.

However, data-driven compiler optimizations based on machine learning models require large sets of quality data for training in order to match or even outperform existing human-crafted heuristics. In static compilation setups, related work has addressed this problem with iterative compilation. However, a dynamic compiler may produce different data depending on dynamically-chosen compilation strategies, which aggravates the generation of comparable data.

We propose compilation forking, a technique for generating consistent feature and performance data from arbitrary, dynamically-compiled programs. Different versions of program parts with the same profiling and compilation history are executed within single program runs to minimize noise stemming from dynamic compilation and the runtime environment.

Our approach facilitates large-scale performance evaluations of compiler optimization decisions. Additionally, compilation forking supports creating domain-specific compilation strategies based on machine learning by providing the data for model training.

We implemented compilation forking in the GraalVM compiler in a programming-language-agnostic way. To assess the quality of the generated data, we trained several machine learning models to replace compiler heuristics for loop-related optimizations. The trained models perform equally well to the highly-tuned compiler heuristics when comparing the geometric means of benchmark suite performances. Larger impacts on few single benchmarks range from speedups of 20% to slowdowns of 17%.

The presented approach can be implemented in any dynamic compiler. We believe that it can help to analyze compilation decisions and leverage the use of machine learning into dynamic compilation.

Wed 15 Mar

Displayed time zone: Osaka, Sapporo, Tokyo change

09:00 - 10:30
Research Papers 1Research Papers at Faculty of Engineering Building 2, Room 212
Chair(s): Philipp Haller KTH Royal Institute of Technology
09:00
30m
Talk
A Functional Programming Language with VersionsVol. 6
Research Papers
Yudai Tanabe Tokyo Institute of Technology, Luthfan Anshar Lubis , Tomoyuki Aotani Tokyo Institute of Technology, Hidehiko Masuhara Tokyo Institute of Technology
Link to publication
09:30
30m
Talk
Compilation Forking: A Fast and Flexible Way of Generating Data for Compiler-Internal Machine Learning TasksVol. 7
Research Papers
Raphael Mosaner JKU Linz, David Leopoldseder Oracle Labs, Wolfgang Kisling Johannes Kepler University Linz, Lukas Stadler Oracle Labs, Austria, Hanspeter Mössenböck JKU Linz
Link to publication
10:00
30m
Talk
Black Boxes, White Noise: Similarity Detection for Neural FunctionsVol. 7remote
Research Papers
Farima Farmahinifarahani University of California at Irvine, Crista Lopes University of California, Irvine
Link to publication